Acidic hydrolysis of N-acyl-1-substituted 3-amino-1,2-dicarba-closo-dodecaboranes

Galina L. Levit ${ }^{\text {a,** }}$, Alexander M. Demin ${ }^{\text {a }}$, Mikhail I. Kodess ${ }^{\text {a }}$, Marina A. Ezhikova ${ }^{\text {a }}$, Liliya Sh. Sadretdinova ${ }^{\text {a }}$, Valentina A. Ol'shevskaya ${ }^{\text {b }}$, Valery N. Kalinin ${ }^{\text {b }}$, Victor P. Krasnov ${ }^{\text {a }}$, Valery N. Charushin ${ }^{\text {a }}$
${ }^{\text {a }}$ I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Div.), S. Kovalevskoy St., 20, Ekaterinburg, 620219, Russia
${ }^{\mathrm{b}}$ A. N. Nesmeyanov Institute of Organoelement Compounds of RAS, Vavilova St., 28, Moscow, 119991, Russia

Received 4 October 2004; accepted 26 January 2005
Available online 8 March 2005

Abstract

Acidic hydrolysis of N-acyl 1-methyl- and 1-phenyl-3-amino-1,2-dicarba-closo-dodecaboranes has been studied. It has been shown that acidic hydrolysis of diastereomeric amides of 1-methyl-3-amino-1,2-dicarba-closo-dodecaborane results in the partial racemization of the target 3 -amino-1-methylcarborane. Under the similar conditions, the hydrolysis of N-acyl-3-amino-1-phenyl-1,2-dicarba-closo-dodecaboranes resulted in amide bond cleavage accompanied by simultaneous deboronation with the removal of boron atom at position 6 of carborane cage and formation of 7,8 -dicarba-nido-undecaborane derivative according to ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy. © 2005 Elsevier B.V. All rights reserved.

Keywords: 3-Amino-1,2-dicarba-closo-dodecaboranes; Amides; Acidic hydrolysis; Racemization; Deboronation; NMR spectroscopy

1. Introduction

The icosahedral carboranes (dicarba-closo-dodecaboranes or "carboranes") are compounds featuring a high boron content [1]. Compounds containing the carborane cage are of great interest as building blocks in the field of drug design, especially as radiopharmaceuticals for the boron neutron capture therapy of cancer [1b,2]. The physiological activity of such compounds should significantly depend on their stereo structure.

Recently, we have obtained both enantiomers of 3-amino-1-methyl-1,2-dicarba-closo-dodecaborane (1) using (S)-naproxen chloride as a chiral resolving agent

[^0](CRA) [3]. Structural isomerism of such carboranes is caused by relative position of substituents in the carborane cage (Fig. 1). For convenience in the designation of the configuration of planar-chiral carboranes and their derivatives we have used the approach suggested for chiral 7,8 -dicarba-nido-undecaborane derivatives [4]. The observer looks onto the plane of $\mathrm{C}^{1} \mathrm{R}-\mathrm{C}^{2} \mathrm{H}-\mathrm{B}^{3} \mathrm{NHX}$ face of carborane cage and then examines the position of substituents according to the Cahn-Ingold-Prelog rule.

Previously, we have shown that chiral acyl chlorides, such as (S)-naproxen chloride, N-tosyl-((S)-prolyl chloride and N-phthaloyl-((S)-alanyl chloride are convenient and efficient CRAs for the kinetic resolution of heterocyclic amines [5]. To optimize the process of optical resolution of 1 -substituted 3 -aminocarboranes $\mathbf{1}$ and $\mathbf{2}$, we studied the kinetic resolution of racemic carboranes

Fig. 1. In icosahedral cage structures, closed circles (•) represent carbon atoms and other vertices represent boron atoms. Hydrogen atoms are omitted for clarity.
via acylation with these CRAs [6]. The individual diastereomeric amides obtained were isolated from diastereomeric mixtures by column chromatography or fractional crystallization. The next step in preparation of enantiomers of 1 -substituted 3 -aminocarboranes $\mathbf{1}$ and $\mathbf{2}$ is hydrolysis of amide bond. In this communication, we present the results of acidic hydrolysis of amides of carboranes $\mathbf{1}$ and 2.

2. Results and discussion

Hydrolysis of the amides was carried out in a mixture of glacial AcOH and concentrated HCl under reflux. Recently, it has been shown that acidic hydrolysis of both (R, S) and (S, S) diastereomeric amides 3 results in the partial racemization of the target 3-aminocarborane 1 [3]. Hydrolysis of N-tosyl-((S)-prolyl amide 4 of 3-amino-1-methylcarborane (de 92%) during 14 h also resulted in the racemization of the target carborane 1 (ee 46\%) (Scheme 1) [7].

Identification of the isolated product 1 was accomplished with the aid of elemental analysis, and ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR, including complete assignment of B signals based on 2D ${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}$ COSY, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ COSY and ${ }^{1} \mathrm{H}^{-11} \mathrm{~B}$ HMQC experiments (Table 1).

It should be mentioned that in the case of acidic hydrolysis of N-tosyl-(S)-prolyl amide 4 racemization

Table 1
${ }^{11}$ B Chemical shifts of compounds $\mathbf{1}, 2$ and 7

Compound	${ }^{11} \mathrm{~B}, \delta(\mathrm{ppm})$
$3-\mathrm{NH}_{2}-1-\mathrm{Me}-1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{9} \mathbf{1}$ (in CDCl_{3})	1.91 (B3)
	-4.18 (B9)
	-5.80 (B12)
	-8.27 (B8)
	-9.56 (B6)
	-10.31 (B5)
	-11.16 (B4)
	-12.77 (B7)
	-14.57 (B11)
	-16.11 (B10)
$3-\mathrm{NH}_{2}-1-\mathrm{Ph}-1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{9} 2$ (in acetone-d d_{6})	4.53 (B3)
	-4.73 (B12)
	-6.01 (B9)
	-8.77 (B6, B8)
	-10.44 (B5)
	-11.58 (B4)
	-12.83 (B7)
	-15.39 (B11)
	-16.53 (B10)
3-NH3 ${ }_{3}^{+}-7-\mathrm{Ph}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}^{-} 7$ (in $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$	-5.64 (B11)
	-9.02 (B3)
	-9.74 (B9)
	-15.55 (B5)
	-17.21 (B6)
	-19.93 (B2)
	-21.65 (B4)
	-34.35 (B10)
	-35.58 (B1)

of 3 -aminocarborane $\mathbf{1}$ was greater than in the case of hydrolysis of amides 3, cf. from de 98% to ee 83% for hydrolysis of amide 3, and from de 92% to ee 46% for amide 4. However, acidic hydrolysis of N-acyl heterocyclic amines of this kind proceeded without racemization of amine fragment [5].

Under the similar conditions the hydrolysis of 3-ami-no-1-phenyl-1,2-dicarba-closo-dodecaborane amides 5 and 6 resulted in amide bond cleavage accompanied by simultaneous deboronation with the removal of boron atom at position 6 of carborane cage and formation of 3-ammonium-7-phenyl-7,8-dicarba-nido-undecaborate 7 (Scheme 2) according to ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectra, including 2D ${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}$ COSY, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ COSY and ${ }^{1} \mathrm{H}-{ }^{11} \mathrm{~B}$ HMQC experiments (Table 1).

To explain this phenomenon, we carried out the "model" experiments. Racemic 3-aminocarborane $\mathbf{2}$ was refluxed in a mixture of $\mathrm{CD}_{3} \mathrm{COOD}$ and DCl for 22 h . The reaction mixture was monitored by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR at intervals.

CH signal of hydrochloride of 3-aminocarborane $2(\delta$ $5.58 \mathrm{ppm})$ disappeared gradually with simultaneous appearance of CH signal at $\delta 6.41 \mathrm{ppm}$ and signal of bridging H at $\delta-2.3 \mathrm{ppm}$. In ${ }^{11} \mathrm{~B}$ NMR spectra we observed the gradual appearance of the signals at $\delta-34.17$ and -35.74 ppm .

Scheme 2.

It should be noted that it comes as a surprise that treatment of 3-aminocarborane derivative in strongly acidic medium results in its deboronation, since to our knowledge, the deboronation of closo-dodecaboranes has been described in the literature under neutral conditions [8] or basic conditions, in the presence of the powerful Lewis bases [9]. Thus, instead of the individual enantiomers of carborane 2 we obtained 7,8-dicarba-nido-undecaborane derivative 7 as a result of acidic hydrolysis of amides 5 and 6.

In conclusion, the mechanisms of racemization of 3-amino-1-methyl-1,2-carborane $\mathbf{1}$ and deboronation of 3-amino-1-phenyl-1,2-carborane 2 in acidic medium seem to be not obvious. So, we are currently examining acid promoted mechanisms of both racemization and deboronation to explain these phenomena.

3. Experimental

3.1. General

Racemic 3-aminocarboranes $\mathbf{1}$ and $\mathbf{2}$ were synthesized according to the procedure described [10].
${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectra were recorded on a Bruker DRX 400 spectrometer operating at 400.13 and 128.38 MHz , respectively. ${ }^{1} \mathrm{H}$ NMR data for compounds $\mathbf{1 , 2}$ and 7 were obtained from ${ }^{11} \mathrm{~B}$ broad-band decoupled ${ }^{1} \mathrm{H}$ spectra. All signals are expressed in ppm (δ) with tetramethylsilane as an internal standard for ${ }^{1} \mathrm{H}$ NMR. Chemical shift values for ${ }^{11} \mathrm{~B}$ NMR spectra were referenced to external $\mathrm{BF}_{3} \times \mathrm{OEt}_{2}$ in deuterated solvents. Infrared spectrum was recorded in neat on a Perkin-Elmer Spectrum One FT-IR spectrometer.

The de values of amides $\mathbf{3}$ and $\mathbf{4}$ were measured by HPLC on a Merck-Hitachi chromatograph with L-4000A Intelligent Pump, L-4000A UV Detector, and D-2500A Chromato-Integrator [Hibar Pre-packed Column RT250-4, Lichrosorb Si-60]; flow rate of $1 \mathrm{ml} /$ min; UV detection at 230 nm ; mobile phase: hexane: $i-\mathrm{PrOH}=80: 1(\mathrm{~A})$, hexane- $i-\mathrm{PrOH}, 40: 1(\mathrm{~B})$; retention
times $\tau_{3 a} 6.0 \mathrm{~min}, \tau_{\mathbf{3 b}} 10.1 \mathrm{~min}(\mathrm{~A}) ; \tau_{\mathbf{4 a}} 15.4 \mathrm{~min}, \tau_{\mathbf{4 b}}$ 10.6 min (B). Microanalyses were carried out on a CHNS-O model EA-1102 elemental analyzer and were in good agreement with the calculated values.

3.2. (S)-(-)-3-Amino-1-methyl-1,2-dicarba-closo-dodeca-borane (S)-(-)-1

(S, S)-Amide 3 (118 mg, 0.31 mmol , de 98%, HPLC, $\tau_{S, S} 10.1 \mathrm{~min}$) was re fluxed in the mixture of AcOH $(4 \mathrm{~mL})$ and concentrated $\mathrm{HCl}(4 \mathrm{~mL})$ for 14 h . The reaction mixture was evaporated to dryness under reduced pressure. Then $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the reaction mixture was cooled in an ice bath. The precipitate was filtered off and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The combined filtrates were alkalized by $\mathrm{Na}_{2} \mathrm{CO}_{3}$ up to pH 9 under icecooling. Filtration of precipitate gave compound $(S)-1$ as a white solid ($40 \mathrm{mg}, 75 \%$). Mp $157-159^{\circ} \mathrm{C}$; ee 83% (HPLC after derivatization with (S)-naproxen chloride); ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.42$ (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 1.83 (s, $\left.1 \mathrm{H}, \mathrm{H}^{10}\right), 1.86\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 1.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{11}\right), 1.97(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.10 (br. s, $2 \mathrm{H}, \mathrm{H}^{9}$ and H^{12}), 2.13 (br. s, $2 \mathrm{H}, \mathrm{H}^{5}$ and $\left.\mathrm{H}^{7}\right), 2.30\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{8}\right), 2.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6}\right)$, 3.18 (s, $1 \mathrm{H}, \mathrm{CH})$. Anal. Calc. for $\mathrm{C}_{3} \mathrm{H}_{15} \mathrm{~B}_{10} \mathrm{~N}$: C, 20.80; H, 8.73; N, 8.09. Found: C, 21.00; H, 8.83; N, 7.89%.

Following the procedure reported above for hydrolysis of (S, S)-amide 3 and starting with (S, S)-amide 4 ($201 \mathrm{mg}, 0.47 \mathrm{mmol}$, de 92%) compound (S) $\mathbf{- 1}$ was obtained as a white solid ($51 \mathrm{mg}, 63 \%$). Mp $157-159{ }^{\circ} \mathrm{C}$; ee 46% (HPLC after derivatization with (S)-naproxen chloride). Anal. Calc. for $\mathrm{C}_{3} \mathrm{H}_{15} \mathrm{~B}_{10} \mathrm{~N}$: C, 20.80; H , 8.73; N, 8.09. Found: C, 20.96; H, 8.85; N, 7.98\%.

3.3. 3-Ammonium-7-phenyl-7,8-dicarba-nidoundecaborate 7

Amide 5 or 6 (0.53 mmol) was refluxed in the mixture of $\mathrm{AcOH}(4 \mathrm{~mL})$ and concentrated $\mathrm{HCl}(4 \mathrm{~mL})$ for 14 h . The reaction mixture was evaporated to dryness under reduced pressure. Then $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the reaction mixture was cooled in an ice bath. The precipitate was filtered off and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The combined filtrates were alkalized by $\mathrm{Na}_{2} \mathrm{CO}_{3}$ up to pH 5 under ice-cooling, then extracted by ethyl acetate, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure gave compound 7 as a white solid ($88 \mathrm{mg}, 74 \%$). Mp $105-110^{\circ} \mathrm{C}$; IR (neat, cm^{1}): 3627, 3216, 3057, 2986, 2539, 1702, 1648, 1597, 1494, 1445, 1375, 1042, 763, 699. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right):-2.38$ (br. s, 1H, B-H-B), $0.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{10}\right), 0.97\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right)$, $1.27\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 1.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 1.46\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right)$, $1.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 2.16\left(\right.$ br. $\mathrm{s}, 2 \mathrm{H}, \mathrm{H}^{9}$ and $\left.\mathrm{H}^{11}\right), 2.39(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}$), 6.90 (br. s, $3 \mathrm{H}, \mathrm{NH}_{3}$), $7,13(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.21$ (m, 2H, Ph). Anal. Calc. for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~B}_{9} \mathrm{~N}: \mathrm{C}, 42.60 ; \mathrm{H}$, 8.04 ; N, 6.21. Found: C, 43.08; H, 8.15; N, 5.73%.

3.4. NMR experiment

3-Aminocarborane $2(150 \mathrm{mg}, 0.64 \mathrm{mmol})$ was refluxed in a mixture of $\mathrm{CD}_{3} \mathrm{COOD}(5 \mathrm{~mL})$ and concentrated $\mathrm{DCl}(5 \mathrm{~mL})$ for 22 h . The reaction mixture was monitored by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectroscopy at intervals, in $4,7,15$, and 22 h .

Acknowledgements

The work was financially supported by the Russian Foundation for Basic Research (Grant Nos. 03-0333091 and 04-03-96006) and the State Program for Supporting Leading Scientific Schools of the Russian Federation (Grant 1766.2003.3).

References

[1] (a) V.I. Bregadze, Chem. Rev. 92 (1992) 209;
(b) V.N. Kalinin, V.A. Ol'shevskaya, Boron Chemistry at the Beginning of the 21st Century, Editorial URSS, Moscow, 2003, pp. xiii-xxiv.
[2] (a) M.F. Hawthorne, Angew. Chem., Int. Ed. Eng. 32 (1993) 950;
(b) A.H. Soloway, W. Tjarks, B.A. Barnum, F.-G. Rong, R.F Barth, I.M. Codogni, J.G. Wilson, Chem. Rev. 98 (1998) 1515.
[3] V.P. Krasnov, G.L. Levit, V.N. Charushin, A.N. Grishakov, M.I. Kodess, V.N. Kalinin, V.A. Ol'shevskaya, O.N. Chupakhin, Tetrahedron: Asymmetr. 13 (2002) 1833.
[4] H. Brunner, A. Apfelbacher, M. Zabel, Eur. J. Inorg. Chem. (2001) 917.
[5] (a) V.N. Charushin, V.P. Krasnov, G.L. Levit, M.A. Korolyova, M.I. Kodess, O.N. Chupakhin, M.H. Kim, H.S. Lee, Y.J. Park, K.-Ch. Kim, Tetrahedron: Asymmetr. 10 (1999) 2691;
(b) V.P. Krasnov, G.L. Levit, I.N. Andreeva, A.N. Grishakov, V.N. Charushin, O.N. Chupakhin, Mendeleev Commun. 12 (2002) 27;
(c) V.P. Krasnov, G.L. Levit, I.M. Bukrina, I.N. Andreeva, L.Sh. Sadretdinova, M.A. Korolyova, M.I. Kodess, V.N. Charushin, O.N. Chupakhin, Tetrahedron: Asymmetr. 14 (2003) 1985; (d) V.P. Krasnov, G.L. Levit, M.I. Kodess, V.N. Charushin, O.N. Chupakhin, Tetrahedron: Asymmetr. 15 (2004) 859.
[6] G.L. Levit, V.P. Krasnov, A.M. Demin, M.I. Kodess, L.Sh. Sadretdinova, T.V. Matveeva, V.A. Ol'shevskaya, V.N. Kalinin, O.N. Chupakhin, V.N. Charushin, Mendeleev Commun. 14 (2004) 293.
[7] The stereo purity of carborane $\mathbf{1}$ was determined by HPLC and ${ }^{1} \mathrm{H}$ NMR spectra with preliminary derivatization by (S)-naproxen or N-tosyl-(5)-prolyl chlorides.
[8] E. Svantesson, J. Pettersson, A. Olin, K. Markides, S. Sjoberg, Acta Chem. Scand. 53 (1999) 731.
[9] (a) R.A. Wiesboeck, M.F. Hawthorne, J. Am. Chem. Soc. 86 (1964) 1642;
(b) L.I. Zakharkin, V.N. Kalinin, J. Gen. Chem. USSR (Engl. Transl.) 35 (1965) 1693;
(c) L.I. Zakharkin, V.A. OPshevskaya, D.D. Sulaimankulova, V.A. Antonovich, Izv. Akad. Nauk SSSR, ser. Khim. (1991) 1145; (d) M.A. Fox, K. Wade, J. Organometal. Chem. 573 (1999) 279; (e) M.A. Fox, A.E. Goeta, A.K. Hughes, A.L. Johnson, J. Chem. Soc., Dalton Trans. (2002) 2132.
[10] (a) L.I. Zakharkin, V.N. Kalinin, Izv. Akad. Nauk SSSR, ser. Khim. (1967) 2585;
(b) L.I. Zakharkin, V.N. Kalinin, V.V. Gedymin, J. Organometal. Chem. 16 (1969) 371.

[^0]: * Corresponding author. Tel.: +7 343 3493057; fax: +7 3433741189.

 E-mail address: ca512@ios.uran.ru (G.L. Levit).

